⟨3x+7⟩ y = 1 + & \left( \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \ldots \right. \\
& \quad \left. + \frac{1}{x^{n-1}} + \frac{1}{x^n} \right)
F=G(r2m1m2) (pL)−(m+n)N 232234
(232234)
232234
232234
Let $( \mathcal{T} )$ be a topological space, a basis is defined as
$$
\begin{align*}
RQSZ \\
\mathcal{RQSZ} \\
\mathfrak{RQSZ} \\
\mathbb{RQSZ}
\end{align*}
\begin{equation*} \sum_{i=1}^n i = \left(\sum_{i=1}^{n-1} i\right) + n = \frac{(n-1)(n)}{2} + n = \frac{n(n+1)}{2} \end{equation*}
\displaystyle \bigg|\bigg| + \big|x - |1 - a| + \big| = 0
Now a wild example
\newcommand*{\contfrac}[2]{%
{
\rlap{$\dfrac{1}{\phantom{#1}}$}%
\genfrac{}{}{0pt}{0}{}{#1+#2}%
}
}
a_0 +
\contfrac{a_1}{
\contfrac{a_2}{
\contfrac{a_3}{
\genfrac{}{}{0pt}{0}{}{\ddots}
}}}
\begin{equation} \label{eq1}
\begin{split}
A & = \frac{\pi r^2}{2} \\
& = \frac{1}{2} \pi r^2
\end{split}
\end{equation}
\begin{multline*}
p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3\\
- 12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3
\end{multline*}
Testing notation for limits
This operator changes when used alongside text ( \lim_{h \to 0} (x-h) ).
$\lim_{x\to\infty} f(x)$
Depending on the value of $x$ the equation ( f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x} ) may diverge or converge.
In-line maths elements can be set with a different style: (f(x) = \displaystyle \frac{1}{1+x}). The same is true the other way around:
\begin{eqnarray*}
f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x} \\
\textstyle f(x) = \textstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \\
\scriptstyle f(x) = \scriptstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \\
\scriptscriptstyle f(x) = \scriptscriptstyle \sum_{i=0}^{n} \frac{a_i}{1+x}
\end{eqnarray*}
Let $( \mathcal{T} )$ be a topological space, a basis is defined as